#Copyright ReportLab Europe Ltd. 2000-2017
#see license.txt for license details
#history http://www.reportlab.co.uk/cgi-bin/viewcvs.cgi/public/reportlab/trunk/reportlab/graphics/charts/utils.py
__version__='3.3.0'
__doc__="Utilities used here and there."
from time import mktime, gmtime, strftime
from math import log10, pi, floor, sin, cos, sqrt, hypot
import weakref
from reportlab.graphics.shapes import transformPoint, transformPoints, inverse, Ellipse, Group, String, Path, numericXShift
from reportlab.lib.utils import flatten
from reportlab.pdfbase.pdfmetrics import stringWidth
### Dinu's stuff used in some line plots (likely to vansih).
def mkTimeTuple(timeString):
"Convert a 'dd/mm/yyyy' formatted string to a tuple for use in the time module."
list = [0] * 9
dd, mm, yyyy = list(map(int, timeString.split('/')))
list[:3] = [yyyy, mm, dd]
return tuple(list)
def str2seconds(timeString):
"Convert a number of seconds since the epoch into a date string."
return mktime(mkTimeTuple(timeString))
def seconds2str(seconds):
"Convert a date string into the number of seconds since the epoch."
return strftime('%Y-%m-%d', gmtime(seconds))
### Aaron's rounding function for making nice values on axes.
def nextRoundNumber(x):
"""Return the first 'nice round number' greater than or equal to x
Used in selecting apropriate tick mark intervals; we say we want
an interval which places ticks at least 10 points apart, work out
what that is in chart space, and ask for the nextRoundNumber().
Tries the series 1,2,5,10,20,50,100.., going up or down as needed.
"""
#guess to nearest order of magnitude
if x in (0, 1):
return x
if x < 0:
return -1.0 * nextRoundNumber(-x)
else:
lg = int(log10(x))
if lg == 0:
if x < 1:
base = 0.1
else:
base = 1.0
elif lg < 0:
base = 10.0 ** (lg - 1)
else:
base = 10.0 ** lg # e.g. base(153) = 100
# base will always be lower than x
if base >= x:
return base * 1.0
elif (base * 2) >= x:
return base * 2.0
elif (base * 5) >= x:
return base * 5.0
else:
return base * 10.0
_intervals=(.1, .2, .25, .5)
_j_max=len(_intervals)-1
def find_interval(lo,hi,I=5):
'determine tick parameters for range [lo, hi] using I intervals'
if lo >= hi:
if lo==hi:
if lo==0:
lo = -.1
hi = .1
else:
lo = 0.9*lo
hi = 1.1*hi
else:
raise ValueError("lo>hi")
x=(hi - lo)/float(I)
b= (x>0 and (x<1 or x>10)) and 10**floor(log10(x)) or 1
b = b
while 1:
a = x/b
if a<=_intervals[-1]: break
b = b*10
j = 0
while a>_intervals[j]: j = j + 1
while 1:
ss = _intervals[j]*b
n = lo/ss
l = int(n)-(n<0)
n = ss*l
x = ss*(l+I)
a = I*ss
if n>0:
if a>=hi:
n = 0.0
x = a
elif hi<0:
a = -a
if lo>a:
n = a
x = 0
if hi<=x and n<=lo: break
j = j + 1
if j>_j_max:
j = 0
b = b*10
return n, x, ss, lo - n + x - hi
def find_good_grid(lower,upper,n=(4,5,6,7,8,9), grid=None):
if grid:
t = divmod(lower,grid)[0] * grid
hi, z = divmod(upper,grid)
if z>1e-8: hi = hi+1
hi = hi*grid
else:
try:
n[0]
except TypeError:
n = range(max(1,n-2),max(n+3,2))
w = 1e308
for i in n:
z=find_interval(lower,upper,i)
if z[3]<w:
t, hi, grid = z[:3]
w=z[3]
return t, hi, grid
def ticks(lower, upper, n=(4,5,6,7,8,9), split=1, percent=0, grid=None, labelVOffset=0):
'''
return tick positions and labels for range lower<=x<=upper
n=number of intervals to try (can be a list or sequence)
split=1 return ticks then labels else (tick,label) pairs
'''
t, hi, grid = find_good_grid(lower, upper, n, grid)
power = floor(log10(grid))
if power==0: power = 1
w = grid/10.**power
w = int(w)!=w
if power > 3 or power < -3:
format = '%+'+repr(w+7)+'.0e'
else:
if power >= 0:
digits = int(power)+w
format = '%' + repr(digits)+'.0f'
else:
digits = w-int(power)
format = '%'+repr(digits+2)+'.'+repr(digits)+'f'
if percent: format=format+'%%'
T = []
n = int(float(hi-t)/grid+0.1)+1
if split:
labels = []
for i in range(n):
v = t+grid*i
T.append(v)
labels.append(format % (v+labelVOffset))
return T, labels
else:
for i in range(n):
v = t+grid*i
T.append((v, format % (v+labelVOffset)))
return T
def findNones(data):
m = len(data)
if None in data:
b = 0
while b<m and data[b] is None:
b += 1
if b==m: return data
l = m-1
while data[l] is None:
l -= 1
l+=1
if b or l: data = data[b:l]
I = [i for i in range(len(data)) if data[i] is None]
for i in I:
data[i] = 0.5*(data[i-1]+data[i+1])
return b, l, data
return 0,m,data
def pairFixNones(pairs):
Y = [x[1] for x in pairs]
b,l,nY = findNones(Y)
m = len(Y)
if b or l<m or nY!=Y:
if b or l<m: pairs = pairs[b:l]
pairs = [(x[0],y) for x,y in zip(pairs,nY)]
return pairs
def maverage(data,n=6):
data = (n-1)*[data[0]]+data
data = [float(sum(data[i-n:i]))/n for i in range(n,len(data)+1)]
return data
def pairMaverage(data,n=6):
return [(x[0],s) for x,s in zip(data, maverage([x[1] for x in data],n))]
class DrawTimeCollector(object):
'''
generic mechanism for collecting information about nodes at the time they are about to be drawn
'''
def __init__(self,formats=['gif']):
self._nodes = weakref.WeakKeyDictionary()
self.clear()
self._pmcanv = None
self.formats = formats
self.disabled = False
def clear(self):
self._info = []
self._info_append = self._info.append
def record(self,func,node,*args,**kwds):
self._nodes[node] = (func,args,kwds)
node.__dict__['_drawTimeCallback'] = self
def __call__(self,node,canvas,renderer):
func = self._nodes.get(node,None)
if func:
func, args, kwds = func
i = func(node,canvas,renderer, *args, **kwds)
if i is not None: self._info_append(i)
@staticmethod
def rectDrawTimeCallback(node,canvas,renderer,**kwds):
A = getattr(canvas,'ctm',None)
if not A: return
x1 = node.x
y1 = node.y
x2 = x1 + node.width
y2 = y1 + node.height
D = kwds.copy()
D['rect']=DrawTimeCollector.transformAndFlatten(A,((x1,y1),(x2,y2)))
return D
@staticmethod
def transformAndFlatten(A,p):
''' transform an flatten a list of points
A transformation matrix
p points [(x0,y0),....(xk,yk).....]
'''
if tuple(A)!=(1,0,0,1,0,0):
iA = inverse(A)
p = transformPoints(iA,p)
return tuple(flatten(p))
@property
def pmcanv(self):
if not self._pmcanv:
import renderPM
self._pmcanv = renderPM.PMCanvas(1,1)
return self._pmcanv
def wedgeDrawTimeCallback(self,node,canvas,renderer,**kwds):
A = getattr(canvas,'ctm',None)
if not A: return
if isinstance(node,Ellipse):
c = self.pmcanv
c.ellipse(node.cx, node.cy, node.rx,node.ry)
p = c.vpath
p = [(x[1],x[2]) for x in p]
else:
p = node.asPolygon().points
p = [(p[i],p[i+1]) for i in range(0,len(p),2)]
D = kwds.copy()
D['poly'] = self.transformAndFlatten(A,p)
return D
def save(self,fnroot):
'''
save the current information known to this collector
fnroot is the root name of a resource to name the saved info
override this to get the right semantics for your collector
'''
import pprint
f=open(fnroot+'.default-collector.out','w')
try:
pprint.pprint(self._info,f)
finally:
f.close()
def xyDist(xxx_todo_changeme, xxx_todo_changeme1 ):
'''return distance between two points'''
(x0,y0) = xxx_todo_changeme
(x1,y1) = xxx_todo_changeme1
return hypot((x1-x0),(y1-y0))
def lineSegmentIntersect(xxx_todo_changeme2, xxx_todo_changeme3, xxx_todo_changeme4, xxx_todo_changeme5
):
(x00,y00) = xxx_todo_changeme2
(x01,y01) = xxx_todo_changeme3
(x10,y10) = xxx_todo_changeme4
(x11,y11) = xxx_todo_changeme5
p = x00,y00
r = x01-x00,y01-y00
q = x10,y10
s = x11-x10,y11-y10
rs = float(r[0]*s[1]-r[1]*s[0])
qp = q[0]-p[0],q[1]-p[1]
qpr = qp[0]*r[1]-qp[1]*r[0]
qps = qp[0]*s[1]-qp[1]*s[0]
if abs(rs)<1e-8:
if abs(qpr)<1e-8: return 'collinear'
return None
t = qps/rs
u = qpr/rs
if 0<=t<=1 and 0<=u<=1:
return p[0]+t*r[0], p[1]+t*r[1]
def makeCircularString(x, y, radius, angle, text, fontName, fontSize, inside=0, G=None,textAnchor='start'):
'''make a group with circular text in it'''
if not G: G = Group()
angle %= 360
pi180 = pi/180
phi = angle*pi180
width = stringWidth(text, fontName, fontSize)
sig = inside and -1 or 1
hsig = sig*0.5
sig90 = sig*90
if textAnchor!='start':
if textAnchor=='middle':
phi += sig*(0.5*width)/radius
elif textAnchor=='end':
phi += sig*float(width)/radius
elif textAnchor=='numeric':
phi += sig*float(numericXShift(textAnchor,text,width,fontName,fontSize,None))/radius
for letter in text:
width = stringWidth(letter, fontName, fontSize)
beta = float(width)/radius
h = Group()
h.add(String(0, 0, letter, fontName=fontName,fontSize=fontSize,textAnchor="start"))
h.translate(x+cos(phi)*radius,y+sin(phi)*radius) #translate to radius and angle
h.rotate((phi-hsig*beta)/pi180-sig90) # rotate as needed
G.add(h) #add to main group
phi -= sig*beta #increment
return G
class CustomDrawChanger:
'''
a class to simplify making changes at draw time
'''
def __init__(self):
self.store = None
def __call__(self,change,obj):
if change:
self.store = self._changer(obj)
assert isinstance(self.store,dict), '%s.changer should return a dict of changed attributes' % self.__class__.__name__
elif self.store is not None:
for a,v in self.store.items():
setattr(obj,a,v)
self.store = None
def _changer(self,obj):
'''
When implemented this method should return a dictionary of
original attribute values so that a future self(False,obj)
can restore them.
'''
raise RuntimeError('Abstract method _changer called')